
Eric Withrow 
gtg333g@mail.gatech.edu 
GTid 901665961 
February 25, 2005 
MATH 2605-A1 
 

Project 1: Following Level Curves 
 

UOverview 
 
This project implements a tangent line algorithm for drawing accurate graphs of level 
curves.  The algorithm takes in a function, an initial point XB0 B for where to start the curve 
and an epsilon value that determines how ‘close’ the next point will be drawn.  The 
algorithm looks like this: 
 
Set the number of steps to be taken as N 
 
While i < N 
 XBj+1 B = XBj B + epsilon*u 
 Where u = (1/norm(v)) * v,  v = perpendicular(gradient of f(XBj B)) 
While i < N 
 Plot each X. 
 
UFirst Function 
 
The first function used to test the program will be: 
f(x,y) = x^2 + y^2   x B0B = (1, 0) 
 
The first step is to enter the initial point into project1.m, the function into f.m, and the 
gradient of f ([2x, 2y]) into gradf.m. 
 
The procedure will be to try lower epsilon value until finding a value that will draw a 
very accurate level curve. 
 
epsilon = 0.1, N = 7 / epsilon 

 



It is clear that the epsilon value is not small enough.  As each step is taken around the 
circle, the new tangent line gets farther and farther away from the ‘exact’ tangent line. 
 
The next step will be to try lower epsilon values in order to try to decrease the amount of 
error introduced into the graph. 
 
epsilon = 0.01, N = 7 / epsilon 

 
 
epsilon = 0.001, N = 7 / epsilon 

 
It is clear that this epsilon value produces a very accurate graph, and the level curve is a 
perfect circle at xB0 B = (1, 0). 
 
USecond Function 
 
The second function used to test the program will be: 
f(x,y) = (x^2 + y^2)^2 − x^2 + y^2   x B0 B = (1, 0) 
 
The first step is to enter the initial point into project1.m, the function into f.m, and the 
gradient of f ([4X^3 + 2X(2Y^2 - 1), 4Y^3 + 2Y(2X^2 + 1)]) into gradf.m. 
 
The procedure will be to try lower epsilon value until finding a value that will draw a 
very accurate level curve. 
 
 
 
 



epsilon = 0.1, N = 7 / epsilon 

 
It is very difficult to see what is happening with such a large step size, so the epsilon 
value should be decreased 
 
epsilon = 0.01, N = 7 / epsilon 
 

 
 
epsilon = 0.001, N = 7 / epsilon 
 

 
 
 
 
 



epsilon = 0.0001, N = 7 / epsilon 
 

 
 
The plotted points in the graph with epsilon = .0001 overlap after going around more than 
once, so this is a good epsilon value.  From this graph hyperbola-shaped graph we can 
easily conclude the function is some sort of saddle. 
 
UWhen the gradient of f is zero 
 
It is possible to run into trouble in the algorithm if the gradient of f is computed to be 
zero at the point we are currently at.  This would cause the norm to be zero, and the 
unitary vector in direction of v would be undefined due to a divide by zero error.  In this 
case I choose to simply skip the point and move on to the next.  This can be done in 
Matlab with a simple if statement: 
 
  if nrm == 0 
      u = 0;                 
  else 
      u = (1/nrm)*v';       
  end 
 
When the next point is calculated, epsilon*u will be zero so the undefined point will be 
replaced by the current point. 
 
UMoving forwards and backwards 
 
It is possible to move backwards instead of forwards by simply using a negative value of 
epsilon.  In my implementation, I simple chose to run the algorithm twice: once moving 
forwards, and once moving forwards from the same starting point.  This produces a more 
symmetric graph but of course twice as many steps (2N) will be needed since half are 
taken up by going one way, and half by the other.   
 
First I set the middle plot point to be 
 
X(N/2,:) = X0;     % first point on the curve is X0 
 
Then the algorithm runs forward from N/2 to N 
 



% RUN FORWARDS for N/2 steps 
for i=N/2:N 
… 
end 
  
Then the algorithm runs backwards from N/2 to 1 
 
% RUN BACKWARDS for N/2 steps 
for i=[(N/2):-1:2] 
… 
end 
  
 
This produces a symmetric graph: 
 

 
 
Note that the epsilon value was purposely set a little too high to see the difference of 
moving both forwards and backwards. 
 
 


