
Eric Withrow
gtg333g@mail.gatech.edu
GTid 901665961
February 25, 2005
MATH 2605-A1

Project 1: Following Level Curves

UOverview

This project implements a tangent line algorithm for drawing accurate graphs of level
curves. The algorithm takes in a function, an initial point XB0 B for where to start the curve
and an epsilon value that determines how ‘close’ the next point will be drawn. The
algorithm looks like this:

Set the number of steps to be taken as N

While i < N
 XBj+1 B = XBj B + epsilon*u
 Where u = (1/norm(v)) * v, v = perpendicular(gradient of f(XBj B))
While i < N
 Plot each X.

UFirst Function

The first function used to test the program will be:
f(x,y) = x^2 + y^2 x B0B = (1, 0)

The first step is to enter the initial point into project1.m, the function into f.m, and the
gradient of f ([2x, 2y]) into gradf.m.

The procedure will be to try lower epsilon value until finding a value that will draw a
very accurate level curve.

epsilon = 0.1, N = 7 / epsilon

It is clear that the epsilon value is not small enough. As each step is taken around the
circle, the new tangent line gets farther and farther away from the ‘exact’ tangent line.

The next step will be to try lower epsilon values in order to try to decrease the amount of
error introduced into the graph.

epsilon = 0.01, N = 7 / epsilon

epsilon = 0.001, N = 7 / epsilon

It is clear that this epsilon value produces a very accurate graph, and the level curve is a
perfect circle at xB0 B = (1, 0).

USecond Function

The second function used to test the program will be:
f(x,y) = (x^2 + y^2)^2 − x^2 + y^2 x B0 B = (1, 0)

The first step is to enter the initial point into project1.m, the function into f.m, and the
gradient of f ([4X^3 + 2X(2Y^2 - 1), 4Y^3 + 2Y(2X^2 + 1)]) into gradf.m.

The procedure will be to try lower epsilon value until finding a value that will draw a
very accurate level curve.

epsilon = 0.1, N = 7 / epsilon

It is very difficult to see what is happening with such a large step size, so the epsilon
value should be decreased

epsilon = 0.01, N = 7 / epsilon

epsilon = 0.001, N = 7 / epsilon

epsilon = 0.0001, N = 7 / epsilon

The plotted points in the graph with epsilon = .0001 overlap after going around more than
once, so this is a good epsilon value. From this graph hyperbola-shaped graph we can
easily conclude the function is some sort of saddle.

UWhen the gradient of f is zero

It is possible to run into trouble in the algorithm if the gradient of f is computed to be
zero at the point we are currently at. This would cause the norm to be zero, and the
unitary vector in direction of v would be undefined due to a divide by zero error. In this
case I choose to simply skip the point and move on to the next. This can be done in
Matlab with a simple if statement:

 if nrm == 0
 u = 0;
 else
 u = (1/nrm)*v';
 end

When the next point is calculated, epsilon*u will be zero so the undefined point will be
replaced by the current point.

UMoving forwards and backwards

It is possible to move backwards instead of forwards by simply using a negative value of
epsilon. In my implementation, I simple chose to run the algorithm twice: once moving
forwards, and once moving forwards from the same starting point. This produces a more
symmetric graph but of course twice as many steps (2N) will be needed since half are
taken up by going one way, and half by the other.

First I set the middle plot point to be

X(N/2,:) = X0; % first point on the curve is X0

Then the algorithm runs forward from N/2 to N

% RUN FORWARDS for N/2 steps
for i=N/2:N
…
end

Then the algorithm runs backwards from N/2 to 1

% RUN BACKWARDS for N/2 steps
for i=[(N/2):-1:2]
…
end

This produces a symmetric graph:

Note that the epsilon value was purposely set a little too high to see the difference of
moving both forwards and backwards.

